1	nvestigation -	Increasing	/Γ	ecreasing)	&	Fnd	Rehav	ior
J	nvesuganon –	mercasme	ட	<i>i</i> ccicasing	œ	Linu	Denay	101

Name:		
Name:		

Increasing/Decreasing/Constant

To describe where a function is increasing, decreasing or constant, we always work from left to right.

- If the y's are getting bigger, the function is **increasing**.
- If the y's are getting smaller, the function is **decreasing**.
- If the y's stay the same, the function is **constant**.

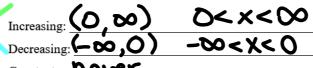
- End Behavior

To describe a function's end behavior, we look at what the graph is doing on the far left and the far right.

- For the **right end behavior** we consider very big positive x's, or "as x approaches infinity." We use the notation "as $x \to \infty$ ". If the y's go up, we say y also approaches infinity, or in symbols $y \to \infty$. If the y's go down, we say y approaches negative infinity, or in symbols $y \to \infty$.
- For the left end behavior we consider very big negative x's, or "as x approaches negative infinity." We use the notation "as x→-∞". If the y's go up, we say y→∞. If the y's go down, we say y→-∞.

If a graph has an endpoint (no arrow), it does not have an end behavior in that direction.

Steps for analyzing a graph:

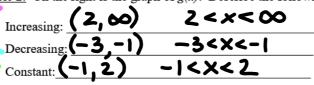

- Label any end points, turning points, and arrows with their coordinates. When labeling arrows, we often need to use ∞ and -∞.
- To determine the x-intervals for increasing, decreasing and constant, break the graph into zones as you travel from left to right. Then, describe each zone by its x-values. (The y-coordinates are never used!) The intervals are always open (no equal to) and are written like this:

left x-value < x < right x-value or (left x-value, right x-value)

The end behavior is "as x→___, y→___" where the blanks are filled in by the "coordinates" of the arrows.

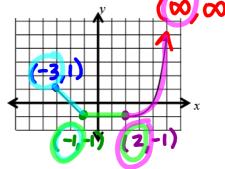
Example 1: On the right is the graph of $f(x) = x^2 + 2$.

Describe the following:



— Constant: Newer

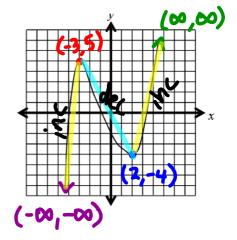
End Behavior:


As
$$x \to \infty$$
, $y \to \bigcirc$
As $x \to -\infty$, $y \to \bigcirc$

Example 2: On the right is the graph of g(x). Describe the following:

End Behavior:

As
$$x \to \infty$$
, $y \to \infty$.
As $x \to -\infty$, $y \to \infty$.


Example 3: On the right is the graph of h(x). Describe the following:

Increasing:
$$(-\infty, -3)$$
 $(2, \infty)$
Decreasing: $(-3, 2)$

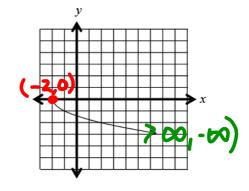
Constant: **Never**

End Behavior:

As
$$x \to \infty$$
, $y \to \bigcirc$
As $x \to -\infty$, $y \to \bigcirc$

Note: If an end stops (like a square root) the x's for that end can't approach infinity, and we just put N/A for what y approaches.

Example 4: On the right is the graph of $m(x) = -\sqrt{x+2}$.


Describe the following:

Increasing: **NEW**Decreasing: (-2, \infty)

Constant: Never

End Behavior:

As $x \to \infty$, $y \to -\infty$. As $x \to -\infty$, $y \to -\infty$.

Key Point:

Increasing/decreasing goes from left to right. End behavior does NOT!